1 
[ noun ] the property of being multiple
Used in print (R. P. Jerrard, "Inscribed squares in plane curves"...)The number of ordinary values of the function f ( t ) at t will be called its multiplicity at t . Further , we see by Lemma 2 that the multiplicity of f can only change at a tangent point , and at such a point can only change by an even integer . Thus the multiplicity of **f for a given t must be an even number . But this is a contradiction , for we know that the multiplicity of f ( t ) is odd for every t . We have shown that the graph of f contains at_least one component whose inverse is the entire interval [ 0 , T ] , and whose multiplicity is odd . Related terms 
2 
[ noun ] a large number
Synonyms Related terms 
* 
